Tag Archives: screw supplier

China supplier Oldham Type Coupling Gh-55X57cross Sliding Set Screw Coupling oldham coupling

Product Description

GH Oldham type coupling cross sliding set screw coupling


Description of
 GH Oldham type coupling cross sliding set screw coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GH Oldham type coupling cross sliding set screw coupling

  

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GH-16X18 4,5,6,6.35,7,8 16 18 7.1 11.6 3.55 M3 0.7
GH-20X25 5,6,6.35,7,8,9,9.525 20 25 9.1 12.7 4.55 M4 1.7
GH-25X28 5,6,6.35,8,9,9.525,10,11,12,14 25 28 11.7 16.65 5.58 M4 1.7
GH-32×33 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 33 14 19.5 7 M4 1.7
GH-40X35 8,9,9.525,10,11,12,12.7,14,14,16,17,18,19,20 40 35 15.5 18.4 7.75 M4 1.7
GH-45X46 8,9,9.525,10,11,12.7,14,15,16,17,18,19,20,22 45 46 21.5 18.4 9 M5 4
GH-50X38 10,12,12.7,14,15,16,17,18,19,20,22,24,25 50 38 16.5 15 8.25 M5 4
GH-55X57 10,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 27 17.5 10.5 M5 4
GH-63X47 14,15,16,17,18,19,20,22,24,25,28,30,32 63 47 21 17.5 10.5 M6 8.4
GH-70X77 16,17,18,19,20,22,24,25,28,30,32,38,40 70 77 36.5 25 13.5 M8 10.5

 

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GH-16X18 0.7 0.8 3 ±0.2 9000 30 3.3×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 6
GH-20X25 1.2 1.2 3 ±0.2 7000 58 1.1×10-6 18
GH-25X28 2 1.6 3 ±0.2 6000 130 3.1×10-6 25
GH-32×33 4.5 2 3 ±0.2 4800 270 9.6×10-6 44
GH-40X35 9 2.4 3 ±0.2 3600 520 2.3×10-5 81
GH-45X46 12 2.8 3 ±0.2 3500 560 3.8×10-5 136
GH-50X38 19 2.6 3 ±0.2 3000 800 1.8×10-4 142
GH-55X57 22 3.3 3 ±0.2 2800 795 8.0×10-4 255
GH-63X47 19 3 3 ±0.2 2500 1200 8.3×10-4 320
GH-70X77 56 3.8 3 ±0.2 2500 1260 3.9×10-4 445

 

oldham coupling

How to Identify Signs of Wear or Damage in an Oldham Coupling?

Regular inspection of Oldham couplings is essential to ensure their proper functioning and prevent unexpected failures. Here are some signs of wear or damage to look for during the inspection:

1. Visible Cracks or Deformation: Check the center disc and the hubs for any visible cracks, tears, or deformation. These can be indicators of excessive stress or misalignment.

2. Abnormal Vibrations: Excessive vibrations during operation may suggest that the coupling is not functioning correctly. It could be due to wear in the center disc or improper installation.

3. Unusual Noise: Grinding, clicking, or banging noises during equipment operation may indicate that the Oldham coupling is experiencing excessive backlash or misalignment.

4. Increased Backlash: If there is noticeable play or free movement between the coupling components, it may be a sign of wear in the center disc or worn hubs.

5. Reduced Performance: A decrease in the performance of the machinery or unexpected issues with power transmission could be indicative of coupling problems.

6. Abnormal Heating: If the coupling becomes unusually hot during operation, it may suggest friction or misalignment issues.

7. Excessive Wear on Center Disc: Inspect the center disc for signs of wear, such as grooves, uneven surfaces, or material loss. This may occur over time due to the repeated flexing of the disc.

8. Lubrication Issues: Improper or inadequate lubrication can lead to increased friction and wear in the coupling components.

If any of these signs are observed during the inspection, it is essential to address the issue promptly. Depending on the severity of the wear or damage, the Oldham coupling may require replacement or repair. Regular maintenance and proper lubrication can help extend the life of the coupling and prevent unexpected failures, ensuring smooth and reliable operation in the machinery or equipment.

oldham coupling

Real-World Examples of Oldham Coupling Usage in Mechanical Engineering

Oldham couplings are widely used in various mechanical engineering applications due to their ability to transmit torque while compensating for angular misalignment. Here are some real-world examples of Oldham coupling usage:

  • Packaging Machinery: Oldham couplings are commonly employed in packaging machines that require precise and continuous motion. These couplings help connect the motor shaft to various components in the packaging process, such as conveyor belts, rollers, and cutting blades.
  • Automated Assembly Lines: In automated assembly lines, Oldham couplings are utilized to transfer torque from the motor to the robotic arms or handling mechanisms. The couplings enable smooth and accurate movement, ensuring precise positioning of components during assembly.
  • Printing Equipment: Printing machines utilize Oldham couplings to transmit power from the motors to the printing cylinders and rollers. The couplings accommodate any misalignment between the shafts and minimize vibration, resulting in improved print quality.
  • Material Handling Systems: Material handling systems, such as conveyor systems, use Oldham couplings to connect drive motors to the conveyor belts. These couplings facilitate the efficient transfer of goods while compensating for any misalignment that may occur during operation.
  • Industrial Pumps: Oldham couplings are employed in industrial pumps to transfer power from the motor to the pump impeller. They aid in absorbing vibration and maintaining alignment, which is crucial for the pump’s optimal performance and longevity.
  • Medical Devices: Some medical devices, such as scanning equipment and diagnostic machines, incorporate Oldham couplings to ensure precise and reliable motion, contributing to accurate medical imaging and diagnosis.

These examples demonstrate the versatility of Oldham couplings in various mechanical engineering applications. Their ability to handle misalignment, reduce vibration, and transmit torque makes them a valuable component in many industrial sectors.

oldham coupling

How an Oldham Coupling Accommodates Misalignment Between Shafts

An Oldham coupling accommodates misalignment between shafts through its unique design, which consists of three main components:

  1. Two Hubs: Each hub is attached to the shaft of the connected equipment. The hubs have a series of slots around their circumference.
  2. Middle Block: The middle block fits between the two hubs and has perpendicular slots on its inner diameter. It connects the two hubs while allowing relative movement between them.

When the shafts experience angular or axial misalignment, the middle block slides within the slots of both hubs. The perpendicular slots on the middle block engage with the slots on the hubs, creating a parallelogram linkage.

This parallelogram linkage allows the Oldham coupling to compensate for angular misalignment by enabling the hubs to rotate independently about their own axes. The sliding action of the middle block accommodates axial misalignment by allowing the hubs to move slightly closer or farther apart.

The use of sliding contact instead of direct physical contact between the hubs minimizes friction, backlash, and wear, making the Oldham coupling an efficient and reliable method for transmitting torque while accommodating misalignment.

Overall, the Oldham coupling’s ability to handle both angular and axial misalignment ensures smooth and precise torque transmission between shafts, reducing stress on connected equipment and extending the lifespan of mechanical components.

China supplier Oldham Type Coupling Gh-55X57cross Sliding Set Screw Coupling  oldham couplingChina supplier Oldham Type Coupling Gh-55X57cross Sliding Set Screw Coupling  oldham coupling
editor by CX 2023-09-07

China supplier Gh-70X77 Oldham Type Coupling Cross Sliding Set Screw Coupling oldham coupling

Product Description

GH Oldham type coupling cross sliding set screw coupling


Description of
 GH Oldham type coupling cross sliding set screw coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GH Oldham type coupling cross sliding set screw coupling

  

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GH-16X18 4,5,6,6.35,7,8 16 18 7.1 11.6 3.55 M3 0.7
GH-20X25 5,6,6.35,7,8,9,9.525 20 25 9.1 12.7 4.55 M4 1.7
GH-25X28 5,6,6.35,8,9,9.525,10,11,12,14 25 28 11.7 16.65 5.58 M4 1.7
GH-32×33 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 33 14 19.5 7 M4 1.7
GH-40X35 8,9,9.525,10,11,12,12.7,14,14,16,17,18,19,20 40 35 15.5 18.4 7.75 M4 1.7
GH-45X46 8,9,9.525,10,11,12.7,14,15,16,17,18,19,20,22 45 46 21.5 18.4 9 M5 4
GH-50X38 10,12,12.7,14,15,16,17,18,19,20,22,24,25 50 38 16.5 15 8.25 M5 4
GH-55X57 10,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 27 17.5 10.5 M5 4
GH-63X47 14,15,16,17,18,19,20,22,24,25,28,30,32 63 47 21 17.5 10.5 M6 8.4
GH-70X77 16,17,18,19,20,22,24,25,28,30,32,38,40 70 77 36.5 25 13.5 M8 10.5

 

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GH-16X18 0.7 0.8 3 ±0.2 9000 30 3.3×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 6
GH-20X25 1.2 1.2 3 ±0.2 7000 58 1.1×10-6 18
GH-25X28 2 1.6 3 ±0.2 6000 130 3.1×10-6 25
GH-32×33 4.5 2 3 ±0.2 4800 270 9.6×10-6 44
GH-40X35 9 2.4 3 ±0.2 3600 520 2.3×10-5 81
GH-45X46 12 2.8 3 ±0.2 3500 560 3.8×10-5 136
GH-50X38 19 2.6 3 ±0.2 3000 800 1.8×10-4 142
GH-55X57 22 3.3 3 ±0.2 2800 795 8.0×10-4 255
GH-63X47 19 3 3 ±0.2 2500 1200 8.3×10-4 320
GH-70X77 56 3.8 3 ±0.2 2500 1260 3.9×10-4 445

 

oldham coupling

What are the Potential Limitations or Drawbacks of Using an Oldham Coupling?

While Oldham couplings offer numerous advantages, they also have some limitations and drawbacks that should be considered when selecting a coupling for a specific application:

1. Limited Misalignment Capacity: Oldham couplings can only accommodate small amounts of angular and axial misalignment between the shafts. They are not suitable for applications with high levels of misalignment as excessive misalignment can lead to premature wear and failure of the center disc.

2. Speed Limitations: Oldham couplings are generally not recommended for high-speed applications. The flexible center disc has a maximum speed limit, and exceeding this limit can cause the disc to fatigue and fail over time.

3. Temperature Sensitivity: The performance of Oldham couplings can be affected by temperature fluctuations. Extreme temperatures can impact the flexibility and integrity of the center disc material, leading to reduced coupling performance.

4. Backlash in High-Precision Systems: While Oldham couplings minimize backlash compared to some other couplings, they may still have some inherent clearance between the hubs and the center disc, leading to a slight amount of backlash. In ultra-high-precision systems, this slight backlash may be a concern.

5. Material Compatibility: The material used for the center disc must be chosen carefully to ensure compatibility with the specific application’s environment and the media being conveyed. Some aggressive chemicals or harsh environments may degrade the material over time.

6. Maintenance: Oldham couplings require periodic inspection and maintenance to ensure proper functioning. The center disc may wear out over time and need replacement, especially in applications with high torque or frequent start-stop cycles.

Despite these limitations, Oldham couplings remain a popular choice in many applications due to their vibration reduction, backlash minimization, and moderate misalignment compensation capabilities. However, it is essential to carefully assess the specific requirements of the application and consider the potential drawbacks before selecting an Oldham coupling.

oldham coupling

Can an Oldham Coupling be Used in Precision Motion Control Applications?

Yes, an Oldham coupling can be used in precision motion control applications. Oldham couplings are known for their ability to provide constant velocity transmission while accommodating misalignment. These couplings offer low backlash and minimal hysteresis, making them suitable for precision motion control systems.

Precision motion control applications require accurate and repeatable motion, which can be achieved by using an Oldham coupling. The coupling’s design allows it to handle angular misalignment without introducing significant axial or radial forces. This feature helps maintain the accuracy and integrity of the motion control system.

Oldham couplings are often used in applications such as robotics, CNC machines, optical equipment, and other systems where precise positioning and smooth motion are essential. Their ability to reduce vibration and minimize backlash is particularly beneficial in these applications, as it enhances the system’s overall performance and accuracy.

When selecting an Oldham coupling for precision motion control, it is essential to consider factors such as the required torque capacity, speed, and shaft sizes. Additionally, regular maintenance and proper alignment are crucial to ensure the coupling’s optimal performance in precision applications.

oldham coupling

How an Oldham Coupling Accommodates Misalignment Between Shafts

An Oldham coupling accommodates misalignment between shafts through its unique design, which consists of three main components:

  1. Two Hubs: Each hub is attached to the shaft of the connected equipment. The hubs have a series of slots around their circumference.
  2. Middle Block: The middle block fits between the two hubs and has perpendicular slots on its inner diameter. It connects the two hubs while allowing relative movement between them.

When the shafts experience angular or axial misalignment, the middle block slides within the slots of both hubs. The perpendicular slots on the middle block engage with the slots on the hubs, creating a parallelogram linkage.

This parallelogram linkage allows the Oldham coupling to compensate for angular misalignment by enabling the hubs to rotate independently about their own axes. The sliding action of the middle block accommodates axial misalignment by allowing the hubs to move slightly closer or farther apart.

The use of sliding contact instead of direct physical contact between the hubs minimizes friction, backlash, and wear, making the Oldham coupling an efficient and reliable method for transmitting torque while accommodating misalignment.

Overall, the Oldham coupling’s ability to handle both angular and axial misalignment ensures smooth and precise torque transmission between shafts, reducing stress on connected equipment and extending the lifespan of mechanical components.

China supplier Gh-70X77 Oldham Type Coupling Cross Sliding Set Screw Coupling  oldham couplingChina supplier Gh-70X77 Oldham Type Coupling Cross Sliding Set Screw Coupling  oldham coupling
editor by CX 2023-08-17

Oldham supplier Type Coupling Cross Sliding Set Screw Coupling Gh-25X28 with ce certificate top quality low price

Product Description

GH Oldham type coupling cross sliding set screw coupling


Description of
 GH Oldham type coupling cross sliding set screw coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GH Oldham type coupling cross sliding set screw coupling

  

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GH-16X18 4,5,6,6.35,7,8 16 18 7.1 11.6 3.55 M3 0.7
GH-20X25 5,6,6.35,7,8,9,9.525 20 25 9.1 12.7 4.55 M4 1.7
GH-25X28 5,6,6.35,8,9,9.525,10,11,12,14 25 28 11.7 16.65 5.58 M4 1.7
GH-32×33 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 33 14 19.5 7 M4 1.7
GH-40X35 8,9,9.525,10,11,12,12.7,14,14,16,17,18,19,20 40 35 15.5 18.4 7.75 M4 1.7
GH-45X46 8,9,9.525,10,11,12.7,14,15,16,17,18,19,20,22 45 46 21.5 18.4 9 M5 4
GH-50X38 10,12,12.7,14,15,16,17,18,19,20,22,24,25 50 38 16.5 15 8.25 M5 4
GH-55X57 10,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 27 17.5 10.5 M5 4
GH-63X47 14,15,16,17,18,19,20,22,24,25,28,30,32 63 47 21 17.5 10.5 M6 8.4
GH-70X77 16,17,18,19,20,22,24,25,28,30,32,38,40 70 77 36.5 25 13.5 M8 10.5

 

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GH-16X18 0.7 0.8 3 ±0.2 9000 30 3.3×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 6
GH-20X25 1.2 1.2 3 ±0.2 7000 58 1.1×10-6 18
GH-25X28 2 1.6 3 ±0.2 6000 130 3.1×10-6 25
GH-32×33 4.5 2 3 ±0.2 4800 270 9.6×10-6 44
GH-40X35 9 2.4 3 ±0.2 3600 520 2.3×10-5 81
GH-45X46 12 2.8 3 ±0.2 3500 560 3.8×10-5 136
GH-50X38 19 2.6 3 ±0.2 3000 800 1.8×10-4 142
GH-55X57 22 3.3 3 ±0.2 2800 795 8.0×10-4 255
GH-63X47 19 3 3 ±0.2 2500 1200 8.3×10-4 320
GH-70X77 56 3.8 3 ±0.2 2500 1260 3.9×10-4 445

 

Flexible supplier Jaw Cross Sliding Set Screw Type and Clamp Type Aluminum Shaft Oldham Coupling with ce certificate top quality low price

Product Description

Product Name Oldham coupling
Material Aluminum 
Type OC16-63
Structure  Setscrew and Clamp
Bore size  3-30mm
Weight  7-450 g/pcs
packing plastic bag +paper box +wooden box +wooden pallet

1. CZPT : machine tools, foundry equipments, conveyors, compressors, painting systems, etc.

2. CZPT s& Food Processing: pulp mill blowers, conveyor in warehouse, agitators, grain, boiler, bakery machine, labeling machine, robots, etc.

3. CZPT Industries: cultivator, rice winnower tractor, harvester, rice planter, farm equipment, etc.

4. Texitile Mills: looms, spinning, wrappers, high-speed auto looms, processing machine, twister, carding machine, ruler calendar machine, high speed winder, etc.

5. CZPT CZPT ry: newspaper press, rotary machine, screen printer machine, linotype machine offset printer, etc.

6. Paper Industries: chipper roll grinder, cut off saw, edgers, flotation cell and chips saws, etc.

7. Building CZPT CZPT ry: buffers, elevator floor polisher mixing machine, vibrator, hoists, crusher, etc.

8. Office Equipments: typewriter, plotters, camera, money drive, money sorting machine, data storage equipment, etc.

9. CZPT and Plastic Industries: conveyor, carton sealers, grinders, creeper paper manufacturing machine, lintec backing, etc.

10. Home Appliances: vacuum cleaner, laundry machine, icecream machine, sewing machine, kitchen equipments, etc.

      

 

Densen supplier Customized Flexible Oldham Coupling Set Screw Clamp Type Shaft Coupling for Servo Motor with ce certificate top quality low price

Product Description

DDensen CZPT ized Flexible Oldham CZPT Set CZPT Clamp Type Shaft CZPT for Servo CZPT

Product Name Flexible Oldham CZPT Set CZPT Clamp Type Shaft CZPT for Servo CZPT
DN mm 12~160mm
Rated Torque 25~25000 N·m
Allowable speed 15300~1500 N·m
Material 35CrMo/ZG270/45# steel/Aluminum alloy
Application Widely used in metallurgy, mining, CZPT and other fields.

Product show

Company Information

Equipment

 

 

Typical case of diaphragm coupling applied to variable frequency speed control equipment

JMB type coupling is applied to HangZhou Oilfield Thermal CZPT Plant

According to the requirements of HangZhou CZPT ctric CZPT CZPT , HangZhou Oilfield Thermal CZPT Plant should dynamically adjust the CZPT generation according to the load of the CZPT grid and market demand, and carry out the transformation of the frequency converter and the suction fan. The motor was originally a 1600KW, 730RPM CZPT -frequency variable speed motor matched by HangZhou CZPT Factory. The speed control mode after changing the frequency is manual control. Press the button speed to increase 10RPM or drop 10RPM. The coupling is still the original elastic decoupling coupling, and the elastic de-coupling coupling after frequency conversion is frequently damaged, which directly affects the normal CZPT generation.

It is found through analysis that in the process of frequency conversion speed regulation, the pin of the coupling can not bear the inertia of the speed regulation process (the diameter of the fan impeller is 3.3 meters) and is cut off, which has great damage to the motor and the fan.

Later, they switched to the JMB460 double-diaphragm wheel-type coupling of CZPT factory (patent number: ZL.99246247.9). After 1 hour of destructive experiment and more than one year of operation test, the equipment is running very well, and there is no Replace the diaphragm. 12 units have been rebuilt and the operation is in good condition.

 

Other Application Case

 

Spare parts

 

Packaging & CZPT

 

Contact us