China best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28 oldham coupling

Product Description

GHC Oldham type coupling cross sliding clamp coupling


Description of
 GHC Oldham type coupling cross sliding clamp coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GHC Oldham type coupling cross sliding clamp coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GHC-16X21 4,5,6,6.35 16 21 8.6 11.6 2.5 M2.5 1
GHC-16X30 4,5,6,6.35 16 30 13.1 11.6 3 M2.5 1
GHC-20X22 5,6,6.35,7,8 20 22 8.6 12.7 2.5 M2.5 1
GHC-20×33 5,6,6.35,7,8 20 33 14.1 12.7 3 M2.5 1
GHC-25×28 5,6,6.35,8,9,9.525,10,11,12 25 28 11.7 16.65 3 M3 1.5
GHC-25X39 5,6,6.35,8,9,9.525,10,11,12 25 39 17.2 16.65 4.2 M3 1.5
GHC-32X33 5,6,8,9,9.525,10,11,12.12.7,14,15,16 32 33 14 19.5 3 M4 2.5
GHC-32X45 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 45 20 19.5 4.5 M4 2.5
GHC-40X50 8,9,9.525,10,11,12,14,15,16,17,18,19 40 50 23 18.4 7 M5 7
GHC-45X46 8,9,9.525,10,11,12,14,15,16,17,18,19,20,22 45 46 21 18.4 7 M5 7
GHC-50X53 10,11,12.7,14,15,16,17,18,19,20,22,24 50 53 24 15 7.5 M6 12
GHC-50X58 10,11,12.7,14,15,16,17,18,19,20,22,24 50 58 26.5 17.5 8 M6 12
GHC-55X57 10,11,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 26 17.5 7.8 M6 12
GHC-63X71 14,15,16,17,18,19,20,22,24,25,28,30,32 63 71 33 24 10 M8 20
GHC-70X77 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 70 77 29.5 25 12 M8 20

  

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GHC-16X21 0.7 0.8 3 ±0.2 8500 30 5.5×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 8
GHC-16X30 0.7 0.8 3 ±0.2 9000 30 5.9×10-7 12
GHC-20X22 1.2 1.2 3 ±0.2 6500 58 1.3×10-6 13
GHC-20×33 1.2 1.2 3 ±0.2 7000 58 1.5×10-6 19
GHC-25X28 2 1.6 3 ±0.2 5500 130 4.0×10-6 24
GHC-25X39 22 1.6 3 ±0.2 6000 130 4.5×10-6 35
GHC-32X33 4.5 2 3 ±0.2 4500 270 1.3×10-5 48
GHC-32X45 4.5 2 3 ±0.2 4800 270 1.5×10-5 67
GHC-40X50 9 2.4 3 ±0.2 3600 520 4.2×10-5 114
GHC-45X46 12 2.5 3 ±0.2 3500 800 4.5×10-5 140
GHC-50X53 19 2.6 3 ±0.2 3000 800 1.0×10-4 190
GHC-50X58 19 3 3 ±0.2 3000 800 1.1×10-4 215
GHC-55X57 25 3.2 3 ±0.2 3000 900 1.3×10-5 260
GHC-63X71 33 3 3 ±0.2 2550 1200 3.5×10-4 455
GHC-70X77 56 3.5 3 ±0.2 2500 1260 4.1×10-5 520

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Can an Oldham Coupling Reduce Vibration and Backlash in Mechanical Systems?

Yes, an Oldham coupling can help reduce vibration and minimize backlash in mechanical systems, making it a popular choice for applications that require precise and smooth power transmission.

Vibration Reduction: Oldham couplings are designed with a three-piece construction, comprising two hubs and a center disc. The center disc, also known as the spacer, is made of a flexible material such as acetal or nylon. When torque is transmitted through the coupling, the center disc flexes, absorbing any misalignment between the shafts. This flexing action helps dampen vibration and reduces resonance in the system, leading to smoother operation and less mechanical stress on connected components.

Backlash Minimization: Backlash is the amount of play or free movement between the mating parts of a mechanical system. In traditional couplings like gear couplings, there can be significant backlash due to the nature of the gear teeth. However, Oldham couplings have a unique design that allows them to transmit torque with minimal backlash. The center disc provides a small amount of clearance between the hubs, enabling smooth rotation without backlash. This characteristic is especially beneficial in applications that require precise motion control, such as robotics and CNC machines.

Overall, the flexible and backlash-free nature of Oldham couplings makes them well-suited for applications where vibration reduction and precise motion control are essential. By reducing vibration and backlash, Oldham couplings contribute to the overall efficiency, accuracy, and reliability of the mechanical system they are employed in.

oldham coupling

Can an Oldham Coupling be Used in Precision Motion Control Applications?

Yes, an Oldham coupling can be used in precision motion control applications. Oldham couplings are known for their ability to provide constant velocity transmission while accommodating misalignment. These couplings offer low backlash and minimal hysteresis, making them suitable for precision motion control systems.

Precision motion control applications require accurate and repeatable motion, which can be achieved by using an Oldham coupling. The coupling’s design allows it to handle angular misalignment without introducing significant axial or radial forces. This feature helps maintain the accuracy and integrity of the motion control system.

Oldham couplings are often used in applications such as robotics, CNC machines, optical equipment, and other systems where precise positioning and smooth motion are essential. Their ability to reduce vibration and minimize backlash is particularly beneficial in these applications, as it enhances the system’s overall performance and accuracy.

When selecting an Oldham coupling for precision motion control, it is essential to consider factors such as the required torque capacity, speed, and shaft sizes. Additionally, regular maintenance and proper alignment are crucial to ensure the coupling’s optimal performance in precision applications.

oldham coupling

Materials Used in Manufacturing Oldham Couplings

Oldham couplings are commonly made from various materials to suit different application requirements. The choice of material depends on factors such as torque capacity, operating conditions, and environmental considerations. Some of the commonly used materials in manufacturing Oldham couplings include:

  • Aluminum: Aluminum is a popular choice for Oldham couplings due to its lightweight and excellent machinability. It is suitable for low to medium torque applications and offers good corrosion resistance.
  • Stainless Steel: Stainless steel is known for its high strength, corrosion resistance, and durability. Oldham couplings made from stainless steel are ideal for applications requiring higher torque transmission and operating in harsh or corrosive environments.
  • Acetal: Acetal, also known as Delrin, is a thermoplastic material with good mechanical properties. It provides low friction and wear resistance, making it suitable for applications where reduced friction is essential.
  • Nylon: Nylon is another thermoplastic material used in Oldham couplings. It offers good chemical resistance and is often chosen for applications with moderate torque requirements.
  • Carbon Steel: Carbon steel is robust and cost-effective, making it suitable for heavy-duty applications. It has high strength and can handle higher torque loads compared to some other materials.
  • Brass: Brass is a durable metal that offers good corrosion resistance. Oldham couplings made from brass are suitable for certain industrial and marine applications.

The material selection for an Oldham coupling depends on factors such as the torque to be transmitted, operating speed, environmental conditions, and budget constraints. Manufacturers often offer a range of material options to meet the diverse needs of different industries and applications.

China best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham couplingChina best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham coupling
editor by CX 2024-05-15