Tag Archives: clamp coupling

China Good quality D32 L45 Standard Nylon Coupler Clamp Spider Oldham Shaft Couplings oldham coupling

Product Description

Product Name

D32 L45 Standard Nylon Coupler Clamp Spider Oldham Shaft Couplings

Material

Aluminum alloy,stainless steel,brass

Surface treatment

Natural color anode

Customized service

Support light customization and logo customization

 Size  To be customized
 Weight  To be customized

Remarks

The default engraving brand name and size of the product. If you need not engraving, please contact the customer service for comments

Packaging Details Carton box with anti-static package,carton plus with wooden case.
Main Products Shaft Parts, Timing Belt Pulley, Gears, CNC Machining Parts, Sheet Metal Fabrication
Certifications(2) ISO9001:2015, IPMS
Applicable Industries Building Material Shops, Manufacturing Plant, Food & Beverage Factory, Farms
Supply Ability 100000 Piece/Pieces per Month
Dimension oem provided
Surface finish anodized
Lead Time 25 days
Application Furniture,cabinet
Custom OEM and ODM services are welcome,we can make cutom LOGO and products according to customer’s requests.
Quality control Our Finished product inspection,Warranty available
service Swiss machining;deburring;lathe/turning;5 axis;micromachining
Color
 
silver,gold,black,red,bulue,and according to the customer requests.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Can an Oldham Coupling Reduce Vibration and Backlash in Mechanical Systems?

Yes, an Oldham coupling can help reduce vibration and minimize backlash in mechanical systems, making it a popular choice for applications that require precise and smooth power transmission.

Vibration Reduction: Oldham couplings are designed with a three-piece construction, comprising two hubs and a center disc. The center disc, also known as the spacer, is made of a flexible material such as acetal or nylon. When torque is transmitted through the coupling, the center disc flexes, absorbing any misalignment between the shafts. This flexing action helps dampen vibration and reduces resonance in the system, leading to smoother operation and less mechanical stress on connected components.

Backlash Minimization: Backlash is the amount of play or free movement between the mating parts of a mechanical system. In traditional couplings like gear couplings, there can be significant backlash due to the nature of the gear teeth. However, Oldham couplings have a unique design that allows them to transmit torque with minimal backlash. The center disc provides a small amount of clearance between the hubs, enabling smooth rotation without backlash. This characteristic is especially beneficial in applications that require precise motion control, such as robotics and CNC machines.

Overall, the flexible and backlash-free nature of Oldham couplings makes them well-suited for applications where vibration reduction and precise motion control are essential. By reducing vibration and backlash, Oldham couplings contribute to the overall efficiency, accuracy, and reliability of the mechanical system they are employed in.

oldham coupling

How to Calculate the Required Size and Specifications for an Oldham Coupling

Calculating the required size and specifications for an Oldham coupling involves considering several key factors. Here’s a step-by-step guide to help you with the calculations:

  1. Identify the Torque Requirements: Determine the maximum torque that the coupling needs to transmit between the two shafts. This can be done by analyzing the torque demands of the application and considering safety factors.
  2. Select the Coupling Material: Based on the operating conditions and the type of machinery, choose a suitable material for the Oldham coupling. Common materials include aluminum, stainless steel, and acetal.
  3. Calculate the Bore Diameter: Measure the diameters of the shafts that the coupling will connect. The bore diameter of the coupling should match the shaft diameters for a proper fit.
  4. Determine the Coupling Size: The coupling’s size is typically specified by its outside diameter and length. Ensure that the selected coupling size fits within the available space in the mechanical system.
  5. Consider Misalignment Compensation: Oldham couplings can accommodate angular misalignment. However, it’s essential to check the coupling’s rated misalignment capability to ensure it meets the application’s requirements.
  6. Check Operating Speed: Verify that the selected coupling can handle the rotational speed (RPM) of the application without exceeding its critical speed.
  7. Factor in Environmental Conditions: If the coupling will be exposed to harsh environmental conditions or corrosive substances, choose a material that can withstand these conditions.

Once you have gathered all the necessary information and made the calculations, you can select the appropriate Oldham coupling that meets the requirements of your specific application. It’s important to consult with coupling manufacturers or engineering experts to ensure the coupling’s compatibility and reliability in your system.

oldham coupling

Transmission of Torque in Oldham Couplings

An Oldham coupling is designed to transmit torque between two shafts that are misaligned but parallel to each other. It consists of three components: two hubs (also known as drive hubs) and a center disc. The hubs are connected to their respective shafts, while the center disc sits between them.

The center disc of the Oldham coupling is characterized by slots or keyways on its opposite sides, which engage with the hubs. The slots allow the center disc to slide or float within the hubs while maintaining a constant angular velocity between the shafts.

When torque is applied to the drive hub on one side, it induces a rotational force on the center disc. This rotational force is then transferred to the other drive hub, which results in torque transmission to the second shaft. The center disc acts as an intermediary between the two hubs, compensating for any axial or radial misalignment between the shafts.

Regarding the question of different shaft diameters, the Oldham coupling can accommodate shafts with different diameters as long as the hub design allows for a secure connection. The keyways or slots in the center disc and hubs should be compatible with the shaft dimensions to ensure proper torque transmission and to prevent slippage or damage.

It is essential to select the appropriate size and design of the Oldham coupling to match the shaft diameters and to ensure reliable torque transmission while accommodating any misalignment between the shafts.

China Good quality D32 L45 Standard Nylon Coupler Clamp Spider Oldham Shaft Couplings  oldham couplingChina Good quality D32 L45 Standard Nylon Coupler Clamp Spider Oldham Shaft Couplings  oldham coupling
editor by CX 2024-05-16

China Best Sales Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28 oldham coupling

Product Description

GHC Oldham type coupling cross sliding clamp coupling


Description of
 GHC Oldham type coupling cross sliding clamp coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GHC Oldham type coupling cross sliding clamp coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GHC-16X21 4,5,6,6.35 16 21 8.6 11.6 2.5 M2.5 1
GHC-16X30 4,5,6,6.35 16 30 13.1 11.6 3 M2.5 1
GHC-20X22 5,6,6.35,7,8 20 22 8.6 12.7 2.5 M2.5 1
GHC-20×33 5,6,6.35,7,8 20 33 14.1 12.7 3 M2.5 1
GHC-25×28 5,6,6.35,8,9,9.525,10,11,12 25 28 11.7 16.65 3 M3 1.5
GHC-25X39 5,6,6.35,8,9,9.525,10,11,12 25 39 17.2 16.65 4.2 M3 1.5
GHC-32X33 5,6,8,9,9.525,10,11,12.12.7,14,15,16 32 33 14 19.5 3 M4 2.5
GHC-32X45 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 45 20 19.5 4.5 M4 2.5
GHC-40X50 8,9,9.525,10,11,12,14,15,16,17,18,19 40 50 23 18.4 7 M5 7
GHC-45X46 8,9,9.525,10,11,12,14,15,16,17,18,19,20,22 45 46 21 18.4 7 M5 7
GHC-50X53 10,11,12.7,14,15,16,17,18,19,20,22,24 50 53 24 15 7.5 M6 12
GHC-50X58 10,11,12.7,14,15,16,17,18,19,20,22,24 50 58 26.5 17.5 8 M6 12
GHC-55X57 10,11,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 26 17.5 7.8 M6 12
GHC-63X71 14,15,16,17,18,19,20,22,24,25,28,30,32 63 71 33 24 10 M8 20
GHC-70X77 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 70 77 29.5 25 12 M8 20

  

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GHC-16X21 0.7 0.8 3 ±0.2 8500 30 5.5×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 8
GHC-16X30 0.7 0.8 3 ±0.2 9000 30 5.9×10-7 12
GHC-20X22 1.2 1.2 3 ±0.2 6500 58 1.3×10-6 13
GHC-20×33 1.2 1.2 3 ±0.2 7000 58 1.5×10-6 19
GHC-25X28 2 1.6 3 ±0.2 5500 130 4.0×10-6 24
GHC-25X39 22 1.6 3 ±0.2 6000 130 4.5×10-6 35
GHC-32X33 4.5 2 3 ±0.2 4500 270 1.3×10-5 48
GHC-32X45 4.5 2 3 ±0.2 4800 270 1.5×10-5 67
GHC-40X50 9 2.4 3 ±0.2 3600 520 4.2×10-5 114
GHC-45X46 12 2.5 3 ±0.2 3500 800 4.5×10-5 140
GHC-50X53 19 2.6 3 ±0.2 3000 800 1.0×10-4 190
GHC-50X58 19 3 3 ±0.2 3000 800 1.1×10-4 215
GHC-55X57 25 3.2 3 ±0.2 3000 900 1.3×10-5 260
GHC-63X71 33 3 3 ±0.2 2550 1200 3.5×10-4 455
GHC-70X77 56 3.5 3 ±0.2 2500 1260 4.1×10-5 520

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Typical Applications of Oldham Couplings

Oldham couplings find various applications in different industries due to their unique features and benefits. Some typical applications include:

1. Industrial Machinery: Oldham couplings are commonly used in industrial machinery, such as conveyor systems, packaging machines, and assembly lines. They help transmit torque between shafts while accommodating misalignment, reducing vibration, and protecting sensitive components.

2. Robotics and Automation: Oldham couplings are employed in robotics and automation systems to connect motor shafts and other mechanical components. Their ability to handle misalignment and their compact design make them suitable for precision movements and robotic applications.

3. Printing and Labeling: In printing and labeling machines, Oldham couplings are utilized to connect rollers and drive shafts. They ensure accurate and reliable torque transmission while allowing for angular misalignment that may occur during operation.

4. Medical Equipment: Oldham couplings are used in medical equipment, such as imaging devices and surgical instruments. Their low backlash and smooth operation are crucial for precise positioning and reducing wear on sensitive medical components.

5. Automotive Industry: In automotive applications, Oldham couplings are used in various systems, including windshield wipers, power seat adjustments, and steering mechanisms. They aid in transferring torque smoothly and maintaining alignment even in dynamic conditions.

6. Textile Machinery: Textile manufacturing equipment often incorporates Oldham couplings to connect spindles and other rotating components. These couplings allow for misalignment while delivering reliable power transmission in high-speed textile processes.

7. Food and Beverage Processing: Oldham couplings are suitable for food and beverage processing machinery, where hygiene and precision are critical. They help connect drive shafts in mixers, conveyors, and packaging equipment.

8. Aerospace and Defense: In aerospace and defense applications, Oldham couplings are used in systems that require reliable torque transmission while compensating for misalignment and vibration. They can be found in various aircraft and defense equipment.

These are just a few examples of the many applications where Oldham couplings play a vital role in ensuring smooth and efficient power transmission and minimizing the wear and tear of mechanical systems.

oldham coupling

Can an Oldham Coupling be Used in Both Horizontal and Vertical Shaft Orientations?

Yes, an Oldham coupling can be used in both horizontal and vertical shaft orientations. The design of the Oldham coupling allows it to accommodate misalignment between shafts in multiple directions, including axial, angular, and parallel misalignments.

In horizontal shaft arrangements, the Oldham coupling can handle misalignment between two parallel shafts while transmitting torque smoothly and efficiently. It is commonly used in various power transmission applications where two shafts are relatively close together and require a reliable coupling to compensate for misalignment.

In vertical shaft orientations, the Oldham coupling can handle axial misalignment, which is the misalignment between the rotational axes of the two shafts. This makes it suitable for applications where the connected shafts are not perfectly aligned due to gravitational forces or other factors.

The Oldham coupling’s ability to accommodate misalignment in both horizontal and vertical shaft orientations makes it a versatile choice for a wide range of mechanical systems, including pumps, compressors, conveyor systems, and more. However, it is essential to ensure proper installation and maintenance to maximize the coupling’s performance and service life in any shaft orientation.

oldham coupling

What is an Oldham Coupling and How Does It Function in Mechanical Systems?

An Oldham coupling is a type of flexible coupling used in mechanical systems to transmit torque between two shafts that are misaligned. It consists of three main components: two hubs or discs and a middle block. The two hubs are connected to the respective shafts, and the middle block sits in between them.

The key feature of the Oldham coupling is the middle block, which has slots on its opposite faces and is connected to the hubs using pins or keys. The slots in the middle block are oriented perpendicular to each other, allowing the middle block to move in a plane perpendicular to the axis of the shafts.

When torque is applied to one shaft, it is transmitted to the middle block of the coupling. Due to the slots, the middle block can slide laterally as the shafts rotate, accommodating both angular and axial misalignments between the shafts. This sliding action helps to reduce the reaction forces and wear that would otherwise occur in rigid couplings when misalignment is present.

Oldham couplings are known for their ability to provide constant velocity transmission even when misalignment exists. They do not have any backlash, which means there is minimal play between the coupling components during rotation. This feature makes them suitable for precision applications where accurate torque transmission and positioning are required.

One of the main advantages of the Oldham coupling is that it effectively isolates the connected shafts from each other, which can help in reducing vibrations and noise. Additionally, it can compensate for parallel misalignment between the shafts, making it ideal for applications where parallel shafts need to be connected while allowing some degree of misalignment.

Oldham couplings are commonly used in various industrial machinery and automation systems, including CNC machines, robotics, printing presses, and conveyor systems. They are particularly useful in applications where precise torque transmission, misalignment compensation, and low maintenance are essential.

China Best Sales Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham couplingChina Best Sales Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham coupling
editor by CX 2024-05-16

China best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28 oldham coupling

Product Description

GHC Oldham type coupling cross sliding clamp coupling


Description of
 GHC Oldham type coupling cross sliding clamp coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GHC Oldham type coupling cross sliding clamp coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GHC-16X21 4,5,6,6.35 16 21 8.6 11.6 2.5 M2.5 1
GHC-16X30 4,5,6,6.35 16 30 13.1 11.6 3 M2.5 1
GHC-20X22 5,6,6.35,7,8 20 22 8.6 12.7 2.5 M2.5 1
GHC-20×33 5,6,6.35,7,8 20 33 14.1 12.7 3 M2.5 1
GHC-25×28 5,6,6.35,8,9,9.525,10,11,12 25 28 11.7 16.65 3 M3 1.5
GHC-25X39 5,6,6.35,8,9,9.525,10,11,12 25 39 17.2 16.65 4.2 M3 1.5
GHC-32X33 5,6,8,9,9.525,10,11,12.12.7,14,15,16 32 33 14 19.5 3 M4 2.5
GHC-32X45 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 45 20 19.5 4.5 M4 2.5
GHC-40X50 8,9,9.525,10,11,12,14,15,16,17,18,19 40 50 23 18.4 7 M5 7
GHC-45X46 8,9,9.525,10,11,12,14,15,16,17,18,19,20,22 45 46 21 18.4 7 M5 7
GHC-50X53 10,11,12.7,14,15,16,17,18,19,20,22,24 50 53 24 15 7.5 M6 12
GHC-50X58 10,11,12.7,14,15,16,17,18,19,20,22,24 50 58 26.5 17.5 8 M6 12
GHC-55X57 10,11,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 26 17.5 7.8 M6 12
GHC-63X71 14,15,16,17,18,19,20,22,24,25,28,30,32 63 71 33 24 10 M8 20
GHC-70X77 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 70 77 29.5 25 12 M8 20

  

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GHC-16X21 0.7 0.8 3 ±0.2 8500 30 5.5×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 8
GHC-16X30 0.7 0.8 3 ±0.2 9000 30 5.9×10-7 12
GHC-20X22 1.2 1.2 3 ±0.2 6500 58 1.3×10-6 13
GHC-20×33 1.2 1.2 3 ±0.2 7000 58 1.5×10-6 19
GHC-25X28 2 1.6 3 ±0.2 5500 130 4.0×10-6 24
GHC-25X39 22 1.6 3 ±0.2 6000 130 4.5×10-6 35
GHC-32X33 4.5 2 3 ±0.2 4500 270 1.3×10-5 48
GHC-32X45 4.5 2 3 ±0.2 4800 270 1.5×10-5 67
GHC-40X50 9 2.4 3 ±0.2 3600 520 4.2×10-5 114
GHC-45X46 12 2.5 3 ±0.2 3500 800 4.5×10-5 140
GHC-50X53 19 2.6 3 ±0.2 3000 800 1.0×10-4 190
GHC-50X58 19 3 3 ±0.2 3000 800 1.1×10-4 215
GHC-55X57 25 3.2 3 ±0.2 3000 900 1.3×10-5 260
GHC-63X71 33 3 3 ±0.2 2550 1200 3.5×10-4 455
GHC-70X77 56 3.5 3 ±0.2 2500 1260 4.1×10-5 520

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Can an Oldham Coupling Reduce Vibration and Backlash in Mechanical Systems?

Yes, an Oldham coupling can help reduce vibration and minimize backlash in mechanical systems, making it a popular choice for applications that require precise and smooth power transmission.

Vibration Reduction: Oldham couplings are designed with a three-piece construction, comprising two hubs and a center disc. The center disc, also known as the spacer, is made of a flexible material such as acetal or nylon. When torque is transmitted through the coupling, the center disc flexes, absorbing any misalignment between the shafts. This flexing action helps dampen vibration and reduces resonance in the system, leading to smoother operation and less mechanical stress on connected components.

Backlash Minimization: Backlash is the amount of play or free movement between the mating parts of a mechanical system. In traditional couplings like gear couplings, there can be significant backlash due to the nature of the gear teeth. However, Oldham couplings have a unique design that allows them to transmit torque with minimal backlash. The center disc provides a small amount of clearance between the hubs, enabling smooth rotation without backlash. This characteristic is especially beneficial in applications that require precise motion control, such as robotics and CNC machines.

Overall, the flexible and backlash-free nature of Oldham couplings makes them well-suited for applications where vibration reduction and precise motion control are essential. By reducing vibration and backlash, Oldham couplings contribute to the overall efficiency, accuracy, and reliability of the mechanical system they are employed in.

oldham coupling

Can an Oldham Coupling be Used in Precision Motion Control Applications?

Yes, an Oldham coupling can be used in precision motion control applications. Oldham couplings are known for their ability to provide constant velocity transmission while accommodating misalignment. These couplings offer low backlash and minimal hysteresis, making them suitable for precision motion control systems.

Precision motion control applications require accurate and repeatable motion, which can be achieved by using an Oldham coupling. The coupling’s design allows it to handle angular misalignment without introducing significant axial or radial forces. This feature helps maintain the accuracy and integrity of the motion control system.

Oldham couplings are often used in applications such as robotics, CNC machines, optical equipment, and other systems where precise positioning and smooth motion are essential. Their ability to reduce vibration and minimize backlash is particularly beneficial in these applications, as it enhances the system’s overall performance and accuracy.

When selecting an Oldham coupling for precision motion control, it is essential to consider factors such as the required torque capacity, speed, and shaft sizes. Additionally, regular maintenance and proper alignment are crucial to ensure the coupling’s optimal performance in precision applications.

oldham coupling

Materials Used in Manufacturing Oldham Couplings

Oldham couplings are commonly made from various materials to suit different application requirements. The choice of material depends on factors such as torque capacity, operating conditions, and environmental considerations. Some of the commonly used materials in manufacturing Oldham couplings include:

  • Aluminum: Aluminum is a popular choice for Oldham couplings due to its lightweight and excellent machinability. It is suitable for low to medium torque applications and offers good corrosion resistance.
  • Stainless Steel: Stainless steel is known for its high strength, corrosion resistance, and durability. Oldham couplings made from stainless steel are ideal for applications requiring higher torque transmission and operating in harsh or corrosive environments.
  • Acetal: Acetal, also known as Delrin, is a thermoplastic material with good mechanical properties. It provides low friction and wear resistance, making it suitable for applications where reduced friction is essential.
  • Nylon: Nylon is another thermoplastic material used in Oldham couplings. It offers good chemical resistance and is often chosen for applications with moderate torque requirements.
  • Carbon Steel: Carbon steel is robust and cost-effective, making it suitable for heavy-duty applications. It has high strength and can handle higher torque loads compared to some other materials.
  • Brass: Brass is a durable metal that offers good corrosion resistance. Oldham couplings made from brass are suitable for certain industrial and marine applications.

The material selection for an Oldham coupling depends on factors such as the torque to be transmitted, operating speed, environmental conditions, and budget constraints. Manufacturers often offer a range of material options to meet the diverse needs of different industries and applications.

China best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham couplingChina best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham coupling
editor by CX 2024-05-15

China Best Sales CHINAMFG Customized Flexible Oldham Coupling Set Screw Clamp Type Shaft Coupling oldham coupling

Product Description

DDensen customized Flexible Oldham Coupling Set Screw Clamp Type Shaft Coupling for Servo Motor

Product Name Flexible Oldham Coupling Set Screw Clamp Type Shaft Coupling for Servo Motor
DN mm 12~160mm
Rated Torque 25~25000 N·m
Allowable speed 15300~1500 N·m
Material 35CrMo/ZG270/45# steel/Aluminum alloy
Application Widely used in metallurgy, mining, engineering and other fields.

Product show

Company Information

Equipment

 

 

Typical case of diaphragm coupling applied to variable frequency speed control equipment

JMB type coupling is applied to HangZhou Oilfield Thermal Power Plant

According to the requirements of HangZhou Electric Power Corporation, HangZhou Oilfield Thermal Power Plant should dynamically adjust the power generation according to the load of the power grid and market demand, and carry out the transformation of the frequency converter and the suction fan. The motor was originally a 1600KW, 730RPM non-frequency variable speed motor matched by HangZhou Motor Factory. The speed control mode after changing the frequency is manual control. Press the button speed to increase 10RPM or drop 10RPM. The coupling is still the original elastic decoupling coupling, and the elastic de-coupling coupling after frequency conversion is frequently damaged, which directly affects the normal power generation.

It is found through analysis that in the process of frequency conversion speed regulation, the pin of the coupling can not bear the inertia of the speed regulation process (the diameter of the fan impeller is 3.3 meters) and is cut off, which has great damage to the motor and the fan.

Later, they switched to the JMB460 double-diaphragm wheel-type coupling of our factory (patent number: ZL.99246247.9). After 1 hour of destructive experiment and more than 1 year of operation test, the equipment is running very well, and there is no Replace the diaphragm. 12 units have been rebuilt and the operation is in good condition.

 

Other Application Case

 

Spare parts

 

Packaging & Shipping

Why Choose Us

1. One stop service:
We have 5 own factories and 50+ sub-contractors located in different areas of China to offer you one-stop manufacturing and purchasing services to help you save time and reduce procurement cost.

2. Your eyes in China:

Our commitment to quality permeates from quoting, scheduling, production, inspection to deliver into your warehouse, our QC team will remark the errors if has on QC documents for your checking before delivery as your 3rd party.

3. Your R&Dconsultant:
With professional engineers team and 29 years manufacture experience ,we would help you work out problems during new parts’ development, optimize design and recommend the most cost-effective solution.

4. Your Emergency Solver:
With continued grown factories team and our QC teams located in different areas, if customers need to expedite the delivery, we would be able to adopt another factory to produce together immediately.

5. Quality Guaranty:
No matter how long time the products delivered, we are responsible for the quality. In case the products be rejected, we would replace them or return fund according to your demand without hesitation

FAQQ1. Are you a manufacturer or a trader?

Manufacture, we have 5 own foundries, 4 in ZheJiang Province, 1 in ZHangZhoug Province

Q2. Do you have MOQ request?

1 pcs per order is ok with us , unless material is seldom used.

Q3. If I only have a sample,without drawings, can you quote then manufacture for me?

Just send us the sample, we would have the sample simulated and measured by professional equipment then issue formal drawings for
you , at the same time, we could help you optimize the design according to your demand and related processes’ feasibility.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Typical Applications of Oldham Couplings

Oldham couplings find various applications in different industries due to their unique features and benefits. Some typical applications include:

1. Industrial Machinery: Oldham couplings are commonly used in industrial machinery, such as conveyor systems, packaging machines, and assembly lines. They help transmit torque between shafts while accommodating misalignment, reducing vibration, and protecting sensitive components.

2. Robotics and Automation: Oldham couplings are employed in robotics and automation systems to connect motor shafts and other mechanical components. Their ability to handle misalignment and their compact design make them suitable for precision movements and robotic applications.

3. Printing and Labeling: In printing and labeling machines, Oldham couplings are utilized to connect rollers and drive shafts. They ensure accurate and reliable torque transmission while allowing for angular misalignment that may occur during operation.

4. Medical Equipment: Oldham couplings are used in medical equipment, such as imaging devices and surgical instruments. Their low backlash and smooth operation are crucial for precise positioning and reducing wear on sensitive medical components.

5. Automotive Industry: In automotive applications, Oldham couplings are used in various systems, including windshield wipers, power seat adjustments, and steering mechanisms. They aid in transferring torque smoothly and maintaining alignment even in dynamic conditions.

6. Textile Machinery: Textile manufacturing equipment often incorporates Oldham couplings to connect spindles and other rotating components. These couplings allow for misalignment while delivering reliable power transmission in high-speed textile processes.

7. Food and Beverage Processing: Oldham couplings are suitable for food and beverage processing machinery, where hygiene and precision are critical. They help connect drive shafts in mixers, conveyors, and packaging equipment.

8. Aerospace and Defense: In aerospace and defense applications, Oldham couplings are used in systems that require reliable torque transmission while compensating for misalignment and vibration. They can be found in various aircraft and defense equipment.

These are just a few examples of the many applications where Oldham couplings play a vital role in ensuring smooth and efficient power transmission and minimizing the wear and tear of mechanical systems.

oldham coupling

Are there Industry Standards or Certifications for Oldham Couplings?

Yes, there are industry standards and certifications that apply to Oldham couplings to ensure their quality, performance, and interchangeability. The most common standards and certifications related to couplings are set by organizations such as the American National Standards Institute (ANSI), the International Organization for Standardization (ISO), and the American Society of Mechanical Engineers (ASME). While these standards might not specifically focus on Oldham couplings, they often include requirements and guidelines that cover various types of flexible couplings, including Oldham couplings.

For example, ANSI B11.20: Safety Requirements for Integrated Manufacturing Systems establishes safety requirements for the design, construction, installation, operation, and maintenance of integrated manufacturing systems. Although not specific to Oldham couplings, this standard may encompass certain aspects of coupling safety.

Additionally, ISO 9001 certification is a widely recognized quality management system certification that many coupling manufacturers strive to achieve. This certification demonstrates a manufacturer’s commitment to producing high-quality products and adhering to rigorous quality control procedures.

When selecting an Oldham coupling, it is essential to check if the manufacturer complies with relevant industry standards and has obtained certifications that demonstrate their commitment to product quality and safety. It is also crucial to consider the specific requirements of your application and whether the chosen coupling meets those needs.

oldham coupling

Materials Used in Manufacturing Oldham Couplings

Oldham couplings are commonly made from various materials to suit different application requirements. The choice of material depends on factors such as torque capacity, operating conditions, and environmental considerations. Some of the commonly used materials in manufacturing Oldham couplings include:

  • Aluminum: Aluminum is a popular choice for Oldham couplings due to its lightweight and excellent machinability. It is suitable for low to medium torque applications and offers good corrosion resistance.
  • Stainless Steel: Stainless steel is known for its high strength, corrosion resistance, and durability. Oldham couplings made from stainless steel are ideal for applications requiring higher torque transmission and operating in harsh or corrosive environments.
  • Acetal: Acetal, also known as Delrin, is a thermoplastic material with good mechanical properties. It provides low friction and wear resistance, making it suitable for applications where reduced friction is essential.
  • Nylon: Nylon is another thermoplastic material used in Oldham couplings. It offers good chemical resistance and is often chosen for applications with moderate torque requirements.
  • Carbon Steel: Carbon steel is robust and cost-effective, making it suitable for heavy-duty applications. It has high strength and can handle higher torque loads compared to some other materials.
  • Brass: Brass is a durable metal that offers good corrosion resistance. Oldham couplings made from brass are suitable for certain industrial and marine applications.

The material selection for an Oldham coupling depends on factors such as the torque to be transmitted, operating speed, environmental conditions, and budget constraints. Manufacturers often offer a range of material options to meet the diverse needs of different industries and applications.

China Best Sales CHINAMFG Customized Flexible Oldham Coupling Set Screw Clamp Type Shaft Coupling  oldham couplingChina Best Sales CHINAMFG Customized Flexible Oldham Coupling Set Screw Clamp Type Shaft Coupling  oldham coupling
editor by CX 2024-05-13

China supplier Best Price Flexible Jaw Cross Sliding Set Screw Type and Clamp Type Aluminum Shaft Oldham Coupling oldham coupling

Product Description

Product Name Oldham coupling
Material Aluminum 
Type OC16-63
Structure  Setscrew and Clamp
Bore size  3-30mm
Weight  7-450 g/pcs
packing plastic bag +paper box +wooden box +wooden pallet

1. Engineering: machine tools, foundry equipments, conveyors, compressors, painting systems, etc.

2. Pharmaceuticals& Food Processing: pulp mill blowers, conveyor in warehouse, agitators, grain, boiler, bakery machine, labeling machine, robots, etc.

3. Agriculture Industries: cultivator, rice winnower tractor, harvester, rice planter, farm equipment, etc.

4. Texitile Mills: looms, spinning, wrappers, high-speed auto looms, processing machine, twister, carding machine, ruler calendar machine, high speed winder, etc.

5. Printing Machinery: newspaper press, rotary machine, screen printer machine, linotype machine offset printer, etc.

6. Paper Industries: chipper roll grinder, cut off saw, edgers, flotation cell and chips saws, etc.

7. Building Construction Machinery: buffers, elevator floor polisher mixing machine, vibrator, hoists, crusher, etc.

8. Office Equipments: typewriter, plotters, camera, money drive, money sorting machine, data storage equipment, etc.

9. Glass and Plastic Industries: conveyor, carton sealers, grinders, creeper paper manufacturing machine, lintec backing, etc.

10. Home Appliances: vacuum cleaner, laundry machine, icecream machine, sewing machine, kitchen equipments, etc.

 

FAQ

Q: Are you trading company or manufacturer ?
A: We are factory.

Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance ,balance before shippment.
If you have another question, pls feel free to contact us as below:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Typical Applications of Oldham Couplings

Oldham couplings find various applications in different industries due to their unique features and benefits. Some typical applications include:

1. Industrial Machinery: Oldham couplings are commonly used in industrial machinery, such as conveyor systems, packaging machines, and assembly lines. They help transmit torque between shafts while accommodating misalignment, reducing vibration, and protecting sensitive components.

2. Robotics and Automation: Oldham couplings are employed in robotics and automation systems to connect motor shafts and other mechanical components. Their ability to handle misalignment and their compact design make them suitable for precision movements and robotic applications.

3. Printing and Labeling: In printing and labeling machines, Oldham couplings are utilized to connect rollers and drive shafts. They ensure accurate and reliable torque transmission while allowing for angular misalignment that may occur during operation.

4. Medical Equipment: Oldham couplings are used in medical equipment, such as imaging devices and surgical instruments. Their low backlash and smooth operation are crucial for precise positioning and reducing wear on sensitive medical components.

5. Automotive Industry: In automotive applications, Oldham couplings are used in various systems, including windshield wipers, power seat adjustments, and steering mechanisms. They aid in transferring torque smoothly and maintaining alignment even in dynamic conditions.

6. Textile Machinery: Textile manufacturing equipment often incorporates Oldham couplings to connect spindles and other rotating components. These couplings allow for misalignment while delivering reliable power transmission in high-speed textile processes.

7. Food and Beverage Processing: Oldham couplings are suitable for food and beverage processing machinery, where hygiene and precision are critical. They help connect drive shafts in mixers, conveyors, and packaging equipment.

8. Aerospace and Defense: In aerospace and defense applications, Oldham couplings are used in systems that require reliable torque transmission while compensating for misalignment and vibration. They can be found in various aircraft and defense equipment.

These are just a few examples of the many applications where Oldham couplings play a vital role in ensuring smooth and efficient power transmission and minimizing the wear and tear of mechanical systems.

oldham coupling

Real-World Examples of Oldham Coupling Usage in Mechanical Engineering

Oldham couplings are widely used in various mechanical engineering applications due to their ability to transmit torque while compensating for angular misalignment. Here are some real-world examples of Oldham coupling usage:

  • Packaging Machinery: Oldham couplings are commonly employed in packaging machines that require precise and continuous motion. These couplings help connect the motor shaft to various components in the packaging process, such as conveyor belts, rollers, and cutting blades.
  • Automated Assembly Lines: In automated assembly lines, Oldham couplings are utilized to transfer torque from the motor to the robotic arms or handling mechanisms. The couplings enable smooth and accurate movement, ensuring precise positioning of components during assembly.
  • Printing Equipment: Printing machines utilize Oldham couplings to transmit power from the motors to the printing cylinders and rollers. The couplings accommodate any misalignment between the shafts and minimize vibration, resulting in improved print quality.
  • Material Handling Systems: Material handling systems, such as conveyor systems, use Oldham couplings to connect drive motors to the conveyor belts. These couplings facilitate the efficient transfer of goods while compensating for any misalignment that may occur during operation.
  • Industrial Pumps: Oldham couplings are employed in industrial pumps to transfer power from the motor to the pump impeller. They aid in absorbing vibration and maintaining alignment, which is crucial for the pump’s optimal performance and longevity.
  • Medical Devices: Some medical devices, such as scanning equipment and diagnostic machines, incorporate Oldham couplings to ensure precise and reliable motion, contributing to accurate medical imaging and diagnosis.

These examples demonstrate the versatility of Oldham couplings in various mechanical engineering applications. Their ability to handle misalignment, reduce vibration, and transmit torque makes them a valuable component in many industrial sectors.

oldham coupling

Installation and Maintenance of Oldham Couplings

Proper installation and maintenance are crucial for ensuring the optimal performance and longevity of an Oldham coupling. Here are the steps to install and maintain an Oldham coupling:

Installation:

  • 1. Inspect the Components: Before installation, carefully inspect the Oldham coupling’s hubs and center disc for any signs of damage or wear.
  • 2. Shaft Preparation: Ensure that the shafts are clean and free from any debris or burrs. Make sure the shaft diameters match the hub bores and keyway dimensions.
  • 3. Center Disc Alignment: Align the center disc with the two hubs so that the slots or keyways on the center disc fit into the corresponding slots on the hubs.
  • 4. Secure the Hubs: Slide the hubs onto the shafts and fasten them securely using appropriate fasteners such as screws or clamps.
  • 5. Tighten Fasteners: Carefully tighten the fasteners according to the manufacturer’s recommendations. Be cautious not to over-torque, as it may lead to distortion or damage to the components.
  • 6. Check Misalignment: Verify that the Oldham coupling can accommodate the required misalignment between the shafts without binding or excessive stress.

Maintenance:

  • 1. Regular Inspection: Periodically inspect the Oldham coupling for signs of wear, damage, or misalignment. Look for any unusual noises or vibrations during operation.
  • 2. Lubrication: Some Oldham couplings may require periodic lubrication for smooth operation. Check the manufacturer’s guidelines for the proper type and amount of lubricant.
  • 3. Replace Worn Components: If any part of the Oldham coupling shows significant wear or damage, replace it with a new component from the original equipment manufacturer (OEM).
  • 4. Alignment Check: Regularly check the alignment of the shafts and the coupling to ensure that the misalignment is within the specified limits.
  • 5. Environmental Considerations: Take into account the operating environment, such as temperature and humidity, and use appropriate materials and coatings to resist corrosion and wear.
  • 6. Follow Manufacturer Guidelines: Always adhere to the manufacturer’s installation, operation, and maintenance instructions to ensure safe and efficient coupling performance.

By following these installation and maintenance practices, an Oldham coupling can provide reliable torque transmission, compensate for misalignment, and contribute to the smooth operation of the connected machinery or equipment.

China supplier Best Price Flexible Jaw Cross Sliding Set Screw Type and Clamp Type Aluminum Shaft Oldham Coupling  oldham couplingChina supplier Best Price Flexible Jaw Cross Sliding Set Screw Type and Clamp Type Aluminum Shaft Oldham Coupling  oldham coupling
editor by CX 2024-05-10

China Good quality D32 L45 Standard Nylon Coupler Clamp Spider Oldham Shaft Couplings oldham coupling

Product Description

Product Name

D32 L45 Standard Nylon Coupler Clamp Spider Oldham Shaft Couplings

Material

Aluminum alloy,stainless steel,brass

Surface treatment

Natural color anode

Customized service

Support light customization and logo customization

 Size  To be customized
 Weight  To be customized

Remarks

The default engraving brand name and size of the product. If you need not engraving, please contact the customer service for comments

Packaging Details Carton box with anti-static package,carton plus with wooden case.
Main Products Shaft Parts, Timing Belt Pulley, Gears, CNC Machining Parts, Sheet Metal Fabrication
Certifications(2) ISO9001:2015, IPMS
Applicable Industries Building Material Shops, Manufacturing Plant, Food & Beverage Factory, Farms
Supply Ability 100000 Piece/Pieces per Month
Dimension oem provided
Surface finish anodized
Lead Time 25 days
Application Furniture,cabinet
Custom OEM and ODM services are welcome,we can make cutom LOGO and products according to customer’s requests.
Quality control Our Finished product inspection,Warranty available
service Swiss machining;deburring;lathe/turning;5 axis;micromachining
Color
 
silver,gold,black,red,bulue,and according to the customer requests.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Can an Oldham Coupling Reduce Vibration and Backlash in Mechanical Systems?

Yes, an Oldham coupling can help reduce vibration and minimize backlash in mechanical systems, making it a popular choice for applications that require precise and smooth power transmission.

Vibration Reduction: Oldham couplings are designed with a three-piece construction, comprising two hubs and a center disc. The center disc, also known as the spacer, is made of a flexible material such as acetal or nylon. When torque is transmitted through the coupling, the center disc flexes, absorbing any misalignment between the shafts. This flexing action helps dampen vibration and reduces resonance in the system, leading to smoother operation and less mechanical stress on connected components.

Backlash Minimization: Backlash is the amount of play or free movement between the mating parts of a mechanical system. In traditional couplings like gear couplings, there can be significant backlash due to the nature of the gear teeth. However, Oldham couplings have a unique design that allows them to transmit torque with minimal backlash. The center disc provides a small amount of clearance between the hubs, enabling smooth rotation without backlash. This characteristic is especially beneficial in applications that require precise motion control, such as robotics and CNC machines.

Overall, the flexible and backlash-free nature of Oldham couplings makes them well-suited for applications where vibration reduction and precise motion control are essential. By reducing vibration and backlash, Oldham couplings contribute to the overall efficiency, accuracy, and reliability of the mechanical system they are employed in.

oldham coupling

What are the Maintenance Requirements for Oldham Couplings to Ensure Their Longevity?

Maintaining Oldham couplings is essential to ensure their longevity and optimal performance. Proper maintenance practices can prevent premature wear and damage, reducing the risk of unexpected failures and downtime. Here are some maintenance requirements to consider for Oldham couplings:

  • Regular Inspection: Perform regular visual inspections of the coupling to check for signs of wear, misalignment, or damage. Look for cracks, corrosion, or any unusual behavior during operation.
  • Lubrication: Oldham couplings may require periodic lubrication to reduce friction between moving parts and prevent excessive wear. Check the manufacturer’s guidelines for the appropriate lubrication schedule and type of lubricant to use.
  • Alignment: Proper alignment is crucial for Oldham couplings to function correctly. Ensure that the shafts and hubs are correctly aligned to avoid additional stress on the coupling components.
  • Torque Check: Periodically check the coupling’s torque to verify that it is within the recommended operating range. Over-torqueing or under-torqueing can lead to coupling failure.
  • Environmental Protection: In harsh environments or applications exposed to contaminants, consider using protective covers or enclosures to shield the coupling from debris, dirt, and moisture.
  • Replacement of Worn Parts: If any component of the Oldham coupling shows signs of wear or damage, promptly replace it with a new one from the manufacturer.
  • Proper Handling: During installation or maintenance, handle the coupling components with care to avoid any accidental damage.

It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the Oldham coupling model being used. Proper maintenance practices will not only extend the coupling’s lifespan but also contribute to the overall reliability and efficiency of the mechanical system it is part of.

oldham coupling

Materials Used in Manufacturing Oldham Couplings

Oldham couplings are commonly made from various materials to suit different application requirements. The choice of material depends on factors such as torque capacity, operating conditions, and environmental considerations. Some of the commonly used materials in manufacturing Oldham couplings include:

  • Aluminum: Aluminum is a popular choice for Oldham couplings due to its lightweight and excellent machinability. It is suitable for low to medium torque applications and offers good corrosion resistance.
  • Stainless Steel: Stainless steel is known for its high strength, corrosion resistance, and durability. Oldham couplings made from stainless steel are ideal for applications requiring higher torque transmission and operating in harsh or corrosive environments.
  • Acetal: Acetal, also known as Delrin, is a thermoplastic material with good mechanical properties. It provides low friction and wear resistance, making it suitable for applications where reduced friction is essential.
  • Nylon: Nylon is another thermoplastic material used in Oldham couplings. It offers good chemical resistance and is often chosen for applications with moderate torque requirements.
  • Carbon Steel: Carbon steel is robust and cost-effective, making it suitable for heavy-duty applications. It has high strength and can handle higher torque loads compared to some other materials.
  • Brass: Brass is a durable metal that offers good corrosion resistance. Oldham couplings made from brass are suitable for certain industrial and marine applications.

The material selection for an Oldham coupling depends on factors such as the torque to be transmitted, operating speed, environmental conditions, and budget constraints. Manufacturers often offer a range of material options to meet the diverse needs of different industries and applications.

China Good quality D32 L45 Standard Nylon Coupler Clamp Spider Oldham Shaft Couplings  oldham couplingChina Good quality D32 L45 Standard Nylon Coupler Clamp Spider Oldham Shaft Couplings  oldham coupling
editor by CX 2024-05-09

China best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28 oldham coupling

Product Description

GHC Oldham type coupling cross sliding clamp coupling


Description of
 GHC Oldham type coupling cross sliding clamp coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GHC Oldham type coupling cross sliding clamp coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GHC-16X21 4,5,6,6.35 16 21 8.6 11.6 2.5 M2.5 1
GHC-16X30 4,5,6,6.35 16 30 13.1 11.6 3 M2.5 1
GHC-20X22 5,6,6.35,7,8 20 22 8.6 12.7 2.5 M2.5 1
GHC-20×33 5,6,6.35,7,8 20 33 14.1 12.7 3 M2.5 1
GHC-25×28 5,6,6.35,8,9,9.525,10,11,12 25 28 11.7 16.65 3 M3 1.5
GHC-25X39 5,6,6.35,8,9,9.525,10,11,12 25 39 17.2 16.65 4.2 M3 1.5
GHC-32X33 5,6,8,9,9.525,10,11,12.12.7,14,15,16 32 33 14 19.5 3 M4 2.5
GHC-32X45 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 45 20 19.5 4.5 M4 2.5
GHC-40X50 8,9,9.525,10,11,12,14,15,16,17,18,19 40 50 23 18.4 7 M5 7
GHC-45X46 8,9,9.525,10,11,12,14,15,16,17,18,19,20,22 45 46 21 18.4 7 M5 7
GHC-50X53 10,11,12.7,14,15,16,17,18,19,20,22,24 50 53 24 15 7.5 M6 12
GHC-50X58 10,11,12.7,14,15,16,17,18,19,20,22,24 50 58 26.5 17.5 8 M6 12
GHC-55X57 10,11,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 26 17.5 7.8 M6 12
GHC-63X71 14,15,16,17,18,19,20,22,24,25,28,30,32 63 71 33 24 10 M8 20
GHC-70X77 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 70 77 29.5 25 12 M8 20

  

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GHC-16X21 0.7 0.8 3 ±0.2 8500 30 5.5×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 8
GHC-16X30 0.7 0.8 3 ±0.2 9000 30 5.9×10-7 12
GHC-20X22 1.2 1.2 3 ±0.2 6500 58 1.3×10-6 13
GHC-20×33 1.2 1.2 3 ±0.2 7000 58 1.5×10-6 19
GHC-25X28 2 1.6 3 ±0.2 5500 130 4.0×10-6 24
GHC-25X39 22 1.6 3 ±0.2 6000 130 4.5×10-6 35
GHC-32X33 4.5 2 3 ±0.2 4500 270 1.3×10-5 48
GHC-32X45 4.5 2 3 ±0.2 4800 270 1.5×10-5 67
GHC-40X50 9 2.4 3 ±0.2 3600 520 4.2×10-5 114
GHC-45X46 12 2.5 3 ±0.2 3500 800 4.5×10-5 140
GHC-50X53 19 2.6 3 ±0.2 3000 800 1.0×10-4 190
GHC-50X58 19 3 3 ±0.2 3000 800 1.1×10-4 215
GHC-55X57 25 3.2 3 ±0.2 3000 900 1.3×10-5 260
GHC-63X71 33 3 3 ±0.2 2550 1200 3.5×10-4 455
GHC-70X77 56 3.5 3 ±0.2 2500 1260 4.1×10-5 520

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Can an Oldham Coupling Reduce Vibration and Backlash in Mechanical Systems?

Yes, an Oldham coupling can help reduce vibration and minimize backlash in mechanical systems, making it a popular choice for applications that require precise and smooth power transmission.

Vibration Reduction: Oldham couplings are designed with a three-piece construction, comprising two hubs and a center disc. The center disc, also known as the spacer, is made of a flexible material such as acetal or nylon. When torque is transmitted through the coupling, the center disc flexes, absorbing any misalignment between the shafts. This flexing action helps dampen vibration and reduces resonance in the system, leading to smoother operation and less mechanical stress on connected components.

Backlash Minimization: Backlash is the amount of play or free movement between the mating parts of a mechanical system. In traditional couplings like gear couplings, there can be significant backlash due to the nature of the gear teeth. However, Oldham couplings have a unique design that allows them to transmit torque with minimal backlash. The center disc provides a small amount of clearance between the hubs, enabling smooth rotation without backlash. This characteristic is especially beneficial in applications that require precise motion control, such as robotics and CNC machines.

Overall, the flexible and backlash-free nature of Oldham couplings makes them well-suited for applications where vibration reduction and precise motion control are essential. By reducing vibration and backlash, Oldham couplings contribute to the overall efficiency, accuracy, and reliability of the mechanical system they are employed in.

oldham coupling

What are the Maintenance Requirements for Oldham Couplings to Ensure Their Longevity?

Maintaining Oldham couplings is essential to ensure their longevity and optimal performance. Proper maintenance practices can prevent premature wear and damage, reducing the risk of unexpected failures and downtime. Here are some maintenance requirements to consider for Oldham couplings:

  • Regular Inspection: Perform regular visual inspections of the coupling to check for signs of wear, misalignment, or damage. Look for cracks, corrosion, or any unusual behavior during operation.
  • Lubrication: Oldham couplings may require periodic lubrication to reduce friction between moving parts and prevent excessive wear. Check the manufacturer’s guidelines for the appropriate lubrication schedule and type of lubricant to use.
  • Alignment: Proper alignment is crucial for Oldham couplings to function correctly. Ensure that the shafts and hubs are correctly aligned to avoid additional stress on the coupling components.
  • Torque Check: Periodically check the coupling’s torque to verify that it is within the recommended operating range. Over-torqueing or under-torqueing can lead to coupling failure.
  • Environmental Protection: In harsh environments or applications exposed to contaminants, consider using protective covers or enclosures to shield the coupling from debris, dirt, and moisture.
  • Replacement of Worn Parts: If any component of the Oldham coupling shows signs of wear or damage, promptly replace it with a new one from the manufacturer.
  • Proper Handling: During installation or maintenance, handle the coupling components with care to avoid any accidental damage.

It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the Oldham coupling model being used. Proper maintenance practices will not only extend the coupling’s lifespan but also contribute to the overall reliability and efficiency of the mechanical system it is part of.

oldham coupling

Installation and Maintenance of Oldham Couplings

Proper installation and maintenance are crucial for ensuring the optimal performance and longevity of an Oldham coupling. Here are the steps to install and maintain an Oldham coupling:

Installation:

  • 1. Inspect the Components: Before installation, carefully inspect the Oldham coupling’s hubs and center disc for any signs of damage or wear.
  • 2. Shaft Preparation: Ensure that the shafts are clean and free from any debris or burrs. Make sure the shaft diameters match the hub bores and keyway dimensions.
  • 3. Center Disc Alignment: Align the center disc with the two hubs so that the slots or keyways on the center disc fit into the corresponding slots on the hubs.
  • 4. Secure the Hubs: Slide the hubs onto the shafts and fasten them securely using appropriate fasteners such as screws or clamps.
  • 5. Tighten Fasteners: Carefully tighten the fasteners according to the manufacturer’s recommendations. Be cautious not to over-torque, as it may lead to distortion or damage to the components.
  • 6. Check Misalignment: Verify that the Oldham coupling can accommodate the required misalignment between the shafts without binding or excessive stress.

Maintenance:

  • 1. Regular Inspection: Periodically inspect the Oldham coupling for signs of wear, damage, or misalignment. Look for any unusual noises or vibrations during operation.
  • 2. Lubrication: Some Oldham couplings may require periodic lubrication for smooth operation. Check the manufacturer’s guidelines for the proper type and amount of lubricant.
  • 3. Replace Worn Components: If any part of the Oldham coupling shows significant wear or damage, replace it with a new component from the original equipment manufacturer (OEM).
  • 4. Alignment Check: Regularly check the alignment of the shafts and the coupling to ensure that the misalignment is within the specified limits.
  • 5. Environmental Considerations: Take into account the operating environment, such as temperature and humidity, and use appropriate materials and coatings to resist corrosion and wear.
  • 6. Follow Manufacturer Guidelines: Always adhere to the manufacturer’s installation, operation, and maintenance instructions to ensure safe and efficient coupling performance.

By following these installation and maintenance practices, an Oldham coupling can provide reliable torque transmission, compensate for misalignment, and contribute to the smooth operation of the connected machinery or equipment.

China best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham couplingChina best Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham coupling
editor by CX 2024-05-08

China supplier Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28 oldham coupling

Product Description

GHC Oldham type coupling cross sliding clamp coupling


Description of
 GHC Oldham type coupling cross sliding clamp coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GHC Oldham type coupling cross sliding clamp coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GHC-16X21 4,5,6,6.35 16 21 8.6 11.6 2.5 M2.5 1
GHC-16X30 4,5,6,6.35 16 30 13.1 11.6 3 M2.5 1
GHC-20X22 5,6,6.35,7,8 20 22 8.6 12.7 2.5 M2.5 1
GHC-20×33 5,6,6.35,7,8 20 33 14.1 12.7 3 M2.5 1
GHC-25×28 5,6,6.35,8,9,9.525,10,11,12 25 28 11.7 16.65 3 M3 1.5
GHC-25X39 5,6,6.35,8,9,9.525,10,11,12 25 39 17.2 16.65 4.2 M3 1.5
GHC-32X33 5,6,8,9,9.525,10,11,12.12.7,14,15,16 32 33 14 19.5 3 M4 2.5
GHC-32X45 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 45 20 19.5 4.5 M4 2.5
GHC-40X50 8,9,9.525,10,11,12,14,15,16,17,18,19 40 50 23 18.4 7 M5 7
GHC-45X46 8,9,9.525,10,11,12,14,15,16,17,18,19,20,22 45 46 21 18.4 7 M5 7
GHC-50X53 10,11,12.7,14,15,16,17,18,19,20,22,24 50 53 24 15 7.5 M6 12
GHC-50X58 10,11,12.7,14,15,16,17,18,19,20,22,24 50 58 26.5 17.5 8 M6 12
GHC-55X57 10,11,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 26 17.5 7.8 M6 12
GHC-63X71 14,15,16,17,18,19,20,22,24,25,28,30,32 63 71 33 24 10 M8 20
GHC-70X77 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 70 77 29.5 25 12 M8 20

  

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GHC-16X21 0.7 0.8 3 ±0.2 8500 30 5.5×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 8
GHC-16X30 0.7 0.8 3 ±0.2 9000 30 5.9×10-7 12
GHC-20X22 1.2 1.2 3 ±0.2 6500 58 1.3×10-6 13
GHC-20×33 1.2 1.2 3 ±0.2 7000 58 1.5×10-6 19
GHC-25X28 2 1.6 3 ±0.2 5500 130 4.0×10-6 24
GHC-25X39 22 1.6 3 ±0.2 6000 130 4.5×10-6 35
GHC-32X33 4.5 2 3 ±0.2 4500 270 1.3×10-5 48
GHC-32X45 4.5 2 3 ±0.2 4800 270 1.5×10-5 67
GHC-40X50 9 2.4 3 ±0.2 3600 520 4.2×10-5 114
GHC-45X46 12 2.5 3 ±0.2 3500 800 4.5×10-5 140
GHC-50X53 19 2.6 3 ±0.2 3000 800 1.0×10-4 190
GHC-50X58 19 3 3 ±0.2 3000 800 1.1×10-4 215
GHC-55X57 25 3.2 3 ±0.2 3000 900 1.3×10-5 260
GHC-63X71 33 3 3 ±0.2 2550 1200 3.5×10-4 455
GHC-70X77 56 3.5 3 ±0.2 2500 1260 4.1×10-5 520

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Typical Applications of Oldham Couplings

Oldham couplings find various applications in different industries due to their unique features and benefits. Some typical applications include:

1. Industrial Machinery: Oldham couplings are commonly used in industrial machinery, such as conveyor systems, packaging machines, and assembly lines. They help transmit torque between shafts while accommodating misalignment, reducing vibration, and protecting sensitive components.

2. Robotics and Automation: Oldham couplings are employed in robotics and automation systems to connect motor shafts and other mechanical components. Their ability to handle misalignment and their compact design make them suitable for precision movements and robotic applications.

3. Printing and Labeling: In printing and labeling machines, Oldham couplings are utilized to connect rollers and drive shafts. They ensure accurate and reliable torque transmission while allowing for angular misalignment that may occur during operation.

4. Medical Equipment: Oldham couplings are used in medical equipment, such as imaging devices and surgical instruments. Their low backlash and smooth operation are crucial for precise positioning and reducing wear on sensitive medical components.

5. Automotive Industry: In automotive applications, Oldham couplings are used in various systems, including windshield wipers, power seat adjustments, and steering mechanisms. They aid in transferring torque smoothly and maintaining alignment even in dynamic conditions.

6. Textile Machinery: Textile manufacturing equipment often incorporates Oldham couplings to connect spindles and other rotating components. These couplings allow for misalignment while delivering reliable power transmission in high-speed textile processes.

7. Food and Beverage Processing: Oldham couplings are suitable for food and beverage processing machinery, where hygiene and precision are critical. They help connect drive shafts in mixers, conveyors, and packaging equipment.

8. Aerospace and Defense: In aerospace and defense applications, Oldham couplings are used in systems that require reliable torque transmission while compensating for misalignment and vibration. They can be found in various aircraft and defense equipment.

These are just a few examples of the many applications where Oldham couplings play a vital role in ensuring smooth and efficient power transmission and minimizing the wear and tear of mechanical systems.

oldham coupling

Can an Oldham Coupling be Used in Precision Motion Control Applications?

Yes, an Oldham coupling can be used in precision motion control applications. Oldham couplings are known for their ability to provide constant velocity transmission while accommodating misalignment. These couplings offer low backlash and minimal hysteresis, making them suitable for precision motion control systems.

Precision motion control applications require accurate and repeatable motion, which can be achieved by using an Oldham coupling. The coupling’s design allows it to handle angular misalignment without introducing significant axial or radial forces. This feature helps maintain the accuracy and integrity of the motion control system.

Oldham couplings are often used in applications such as robotics, CNC machines, optical equipment, and other systems where precise positioning and smooth motion are essential. Their ability to reduce vibration and minimize backlash is particularly beneficial in these applications, as it enhances the system’s overall performance and accuracy.

When selecting an Oldham coupling for precision motion control, it is essential to consider factors such as the required torque capacity, speed, and shaft sizes. Additionally, regular maintenance and proper alignment are crucial to ensure the coupling’s optimal performance in precision applications.

oldham coupling

Installation and Maintenance of Oldham Couplings

Proper installation and maintenance are crucial for ensuring the optimal performance and longevity of an Oldham coupling. Here are the steps to install and maintain an Oldham coupling:

Installation:

  • 1. Inspect the Components: Before installation, carefully inspect the Oldham coupling’s hubs and center disc for any signs of damage or wear.
  • 2. Shaft Preparation: Ensure that the shafts are clean and free from any debris or burrs. Make sure the shaft diameters match the hub bores and keyway dimensions.
  • 3. Center Disc Alignment: Align the center disc with the two hubs so that the slots or keyways on the center disc fit into the corresponding slots on the hubs.
  • 4. Secure the Hubs: Slide the hubs onto the shafts and fasten them securely using appropriate fasteners such as screws or clamps.
  • 5. Tighten Fasteners: Carefully tighten the fasteners according to the manufacturer’s recommendations. Be cautious not to over-torque, as it may lead to distortion or damage to the components.
  • 6. Check Misalignment: Verify that the Oldham coupling can accommodate the required misalignment between the shafts without binding or excessive stress.

Maintenance:

  • 1. Regular Inspection: Periodically inspect the Oldham coupling for signs of wear, damage, or misalignment. Look for any unusual noises or vibrations during operation.
  • 2. Lubrication: Some Oldham couplings may require periodic lubrication for smooth operation. Check the manufacturer’s guidelines for the proper type and amount of lubricant.
  • 3. Replace Worn Components: If any part of the Oldham coupling shows significant wear or damage, replace it with a new component from the original equipment manufacturer (OEM).
  • 4. Alignment Check: Regularly check the alignment of the shafts and the coupling to ensure that the misalignment is within the specified limits.
  • 5. Environmental Considerations: Take into account the operating environment, such as temperature and humidity, and use appropriate materials and coatings to resist corrosion and wear.
  • 6. Follow Manufacturer Guidelines: Always adhere to the manufacturer’s installation, operation, and maintenance instructions to ensure safe and efficient coupling performance.

By following these installation and maintenance practices, an Oldham coupling can provide reliable torque transmission, compensate for misalignment, and contribute to the smooth operation of the connected machinery or equipment.

China supplier Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham couplingChina supplier Oldham Type Coupling Cross Sliding Clamp Coupling Ghc-25X28  oldham coupling
editor by CX 2024-05-07

China Standard Ghc-16X30 Oldham Type Coupling Cross Sliding Clamp Coupling oldham coupling

Product Description

GHC Oldham type coupling cross sliding clamp coupling


Description of
 GHC Oldham type coupling cross sliding clamp coupling
>The colloid material is imported PA66, which has good wear resistance, corrosion resistance and electrical insulation
>Sliding design can compensate radial and angular deviation more effectively
>Detachable design, easy to install
>Fastening method of clamping screw

Dimensions of GHC Oldham type coupling cross sliding clamp coupling

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GHC-16X21 4,5,6,6.35 16 21 8.6 11.6 2.5 M2.5 1
GHC-16X30 4,5,6,6.35 16 30 13.1 11.6 3 M2.5 1
GHC-20X22 5,6,6.35,7,8 20 22 8.6 12.7 2.5 M2.5 1
GHC-20×33 5,6,6.35,7,8 20 33 14.1 12.7 3 M2.5 1
GHC-25×28 5,6,6.35,8,9,9.525,10,11,12 25 28 11.7 16.65 3 M3 1.5
GHC-25X39 5,6,6.35,8,9,9.525,10,11,12 25 39 17.2 16.65 4.2 M3 1.5
GHC-32X33 5,6,8,9,9.525,10,11,12.12.7,14,15,16 32 33 14 19.5 3 M4 2.5
GHC-32X45 5,6,8,9,9.525,10,11,12,12.7,14,15,16 32 45 20 19.5 4.5 M4 2.5
GHC-40X50 8,9,9.525,10,11,12,14,15,16,17,18,19 40 50 23 18.4 7 M5 7
GHC-45X46 8,9,9.525,10,11,12,14,15,16,17,18,19,20,22 45 46 21 18.4 7 M5 7
GHC-50X53 10,11,12.7,14,15,16,17,18,19,20,22,24 50 53 24 15 7.5 M6 12
GHC-50X58 10,11,12.7,14,15,16,17,18,19,20,22,24 50 58 26.5 17.5 8 M6 12
GHC-55X57 10,11,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 57 26 17.5 7.8 M6 12
GHC-63X71 14,15,16,17,18,19,20,22,24,25,28,30,32 63 71 33 24 10 M8 20
GHC-70X77 14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 70 77 29.5 25 12 M8 20

  

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GHC-16X21 0.7 0.8 3 ±0.2 8500 30 5.5×10-7 High strength aluminum alloy P A 6 6 Anodizing treatment 8
GHC-16X30 0.7 0.8 3 ±0.2 9000 30 5.9×10-7 12
GHC-20X22 1.2 1.2 3 ±0.2 6500 58 1.3×10-6 13
GHC-20×33 1.2 1.2 3 ±0.2 7000 58 1.5×10-6 19
GHC-25X28 2 1.6 3 ±0.2 5500 130 4.0×10-6 24
GHC-25X39 22 1.6 3 ±0.2 6000 130 4.5×10-6 35
GHC-32X33 4.5 2 3 ±0.2 4500 270 1.3×10-5 48
GHC-32X45 4.5 2 3 ±0.2 4800 270 1.5×10-5 67
GHC-40X50 9 2.4 3 ±0.2 3600 520 4.2×10-5 114
GHC-45X46 12 2.5 3 ±0.2 3500 800 4.5×10-5 140
GHC-50X53 19 2.6 3 ±0.2 3000 800 1.0×10-4 190
GHC-50X58 19 3 3 ±0.2 3000 800 1.1×10-4 215
GHC-55X57 25 3.2 3 ±0.2 3000 900 1.3×10-5 260
GHC-63X71 33 3 3 ±0.2 2550 1200 3.5×10-4 455
GHC-70X77 56 3.5 3 ±0.2 2500 1260 4.1×10-5 520

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Different Sizes and Configurations of Oldham Couplings

Yes, Oldham couplings are available in various sizes and configurations to suit different applications and requirements. The sizes and configurations can vary based on factors such as torque capacity, shaft diameter, and overall dimensions. Some common variations include:

1. Shaft Diameters: Oldham couplings come in a range of shaft diameter options to accommodate different motor and shaft sizes. They can be found in standard metric and imperial sizes, making them compatible with various equipment and machinery.

2. Torque Capacity: Oldham couplings are designed to handle different torque capacities. The torque capacity of a coupling depends on its size, materials used, and overall construction. High-performance couplings can transmit higher torques, while smaller couplings may be suitable for lighter applications.

3. Coupling Length: The length of the coupling can vary, and some designs allow for compact installations in confined spaces, while others may have longer lengths for specific applications.

4. Materials: Oldham couplings are manufactured using various materials such as aluminum, stainless steel, and composite materials. The choice of material depends on factors like the operating environment, chemical resistance, and desired performance characteristics.

5. Spacer Type: Oldham couplings may have different spacer designs, including straight-spacer and step-spacer configurations. The choice of spacer type can affect the overall stiffness and misalignment capabilities of the coupling.

6. Hub Style: Oldham couplings come with different hub styles, such as set screw, clamp, or compression-style hubs, to accommodate various shaft attachment methods and ease of installation.

7. Backlash: Couplings may have different backlash characteristics, allowing for minimal angular play between the hubs to reduce vibration and shock loads.

Manufacturers of Oldham couplings typically provide detailed specifications and product catalogs that outline the available sizes and configurations. It’s essential to select the right coupling size and configuration that matches the requirements of the specific application to ensure optimal performance and longevity.

oldham coupling

How to Calculate the Required Size and Specifications for an Oldham Coupling

Calculating the required size and specifications for an Oldham coupling involves considering several key factors. Here’s a step-by-step guide to help you with the calculations:

  1. Identify the Torque Requirements: Determine the maximum torque that the coupling needs to transmit between the two shafts. This can be done by analyzing the torque demands of the application and considering safety factors.
  2. Select the Coupling Material: Based on the operating conditions and the type of machinery, choose a suitable material for the Oldham coupling. Common materials include aluminum, stainless steel, and acetal.
  3. Calculate the Bore Diameter: Measure the diameters of the shafts that the coupling will connect. The bore diameter of the coupling should match the shaft diameters for a proper fit.
  4. Determine the Coupling Size: The coupling’s size is typically specified by its outside diameter and length. Ensure that the selected coupling size fits within the available space in the mechanical system.
  5. Consider Misalignment Compensation: Oldham couplings can accommodate angular misalignment. However, it’s essential to check the coupling’s rated misalignment capability to ensure it meets the application’s requirements.
  6. Check Operating Speed: Verify that the selected coupling can handle the rotational speed (RPM) of the application without exceeding its critical speed.
  7. Factor in Environmental Conditions: If the coupling will be exposed to harsh environmental conditions or corrosive substances, choose a material that can withstand these conditions.

Once you have gathered all the necessary information and made the calculations, you can select the appropriate Oldham coupling that meets the requirements of your specific application. It’s important to consult with coupling manufacturers or engineering experts to ensure the coupling’s compatibility and reliability in your system.

oldham coupling

Materials Used in Manufacturing Oldham Couplings

Oldham couplings are commonly made from various materials to suit different application requirements. The choice of material depends on factors such as torque capacity, operating conditions, and environmental considerations. Some of the commonly used materials in manufacturing Oldham couplings include:

  • Aluminum: Aluminum is a popular choice for Oldham couplings due to its lightweight and excellent machinability. It is suitable for low to medium torque applications and offers good corrosion resistance.
  • Stainless Steel: Stainless steel is known for its high strength, corrosion resistance, and durability. Oldham couplings made from stainless steel are ideal for applications requiring higher torque transmission and operating in harsh or corrosive environments.
  • Acetal: Acetal, also known as Delrin, is a thermoplastic material with good mechanical properties. It provides low friction and wear resistance, making it suitable for applications where reduced friction is essential.
  • Nylon: Nylon is another thermoplastic material used in Oldham couplings. It offers good chemical resistance and is often chosen for applications with moderate torque requirements.
  • Carbon Steel: Carbon steel is robust and cost-effective, making it suitable for heavy-duty applications. It has high strength and can handle higher torque loads compared to some other materials.
  • Brass: Brass is a durable metal that offers good corrosion resistance. Oldham couplings made from brass are suitable for certain industrial and marine applications.

The material selection for an Oldham coupling depends on factors such as the torque to be transmitted, operating speed, environmental conditions, and budget constraints. Manufacturers often offer a range of material options to meet the diverse needs of different industries and applications.

China Standard Ghc-16X30 Oldham Type Coupling Cross Sliding Clamp Coupling  oldham couplingChina Standard Ghc-16X30 Oldham Type Coupling Cross Sliding Clamp Coupling  oldham coupling
editor by CX 2024-05-07

China manufacturer Oldham Couplings Clamp or Screw up Aluminum Anodize Torsionally Flexible Coupling oldham coupling

Product Description

Coupling

1. The couplings offer a range of hub and element selection to meet different demands.

2. They can absorb shock and cater for incidental misalignment and damp out small amplitude vibrations.

3. NBR, Urethane, Hytrel elements.

4. Customized requirement is available.

Oldham Couplings
 

Characteristic:

Zero rotary clearance

High torque

Allow large quantity of error adjustment

Absorption of vibration

Electrical insulation

The advantages of simple structure, convenient installation

 

Main Products:

1. Timing Belt Pulley (Synchronous Pulley), Timing Bar, Clamping Plate; 

2. Forging, Casting, Stampling Part; 

3. V Belt Pulley and Taper Lock Bush; Sprocket, Idler and Plate Wheel;Spur Gear, Bevel Gear, Rack;  

4. Shaft Locking Device: could be alternative for Ringfeder, Sati, Chiaravalli, Tollok, etc.; 

5. Shaft Coupling: including Miniature couplings, Curved tooth coupling, Chain coupling, HRC coupling, 
    Normex coupling, Type coupling, GE Coupling, torque limiter, Universal Joint;  

6. Shaft Collars: including Setscrew Type, Single Split and Double Splits; 

7. Gear & Rack: Spur gear/rack, bevel gear, helical gear/rack.

8. Other customized Machining Parts according to drawings (OEM) Forging, Casting, Stamping Parts.

PACKING

Packaging
                      
    Packing  

 

We use standard export wooden case, carton and pallet, but we can also pack it as per your special requirements.

OUR COMPANY
 

ZheJiang Mighty Machinery Co., Ltd. specializes in offering best service and the most competitive price for our customer.

After over 10 years’ hard work, MIGHTY’s business has grown rapidly and become an important partner for oversea clients in the industrial field and become a holding company for 3 manufacturing factories.

MIGHTY’s products have obtained reputation of domestic and oversea customers with taking advantage of technology, management, quality and very competitive price.

Your satisfaction is the biggest motivation for our work, choose us to get high quality products and best service.

OUR FACTORY

FAQ

Q: Are you trading company or manufacturer ?

A: We are factory.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample but the cost of freight on buyer’bill.

Q: What is your terms of payment ?

A: Payment=10000USD, 50% T/T in advance ,balance before shippment.

We warmly welcome friends from domestic and abroad come to us for business negotiation and cooperation for mutual benefit.To supply customers excellent quality products with good price and punctual delivery time is our responsibility.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

oldham coupling

Can an Oldham Coupling Reduce Vibration and Backlash in Mechanical Systems?

Yes, an Oldham coupling can help reduce vibration and minimize backlash in mechanical systems, making it a popular choice for applications that require precise and smooth power transmission.

Vibration Reduction: Oldham couplings are designed with a three-piece construction, comprising two hubs and a center disc. The center disc, also known as the spacer, is made of a flexible material such as acetal or nylon. When torque is transmitted through the coupling, the center disc flexes, absorbing any misalignment between the shafts. This flexing action helps dampen vibration and reduces resonance in the system, leading to smoother operation and less mechanical stress on connected components.

Backlash Minimization: Backlash is the amount of play or free movement between the mating parts of a mechanical system. In traditional couplings like gear couplings, there can be significant backlash due to the nature of the gear teeth. However, Oldham couplings have a unique design that allows them to transmit torque with minimal backlash. The center disc provides a small amount of clearance between the hubs, enabling smooth rotation without backlash. This characteristic is especially beneficial in applications that require precise motion control, such as robotics and CNC machines.

Overall, the flexible and backlash-free nature of Oldham couplings makes them well-suited for applications where vibration reduction and precise motion control are essential. By reducing vibration and backlash, Oldham couplings contribute to the overall efficiency, accuracy, and reliability of the mechanical system they are employed in.

oldham coupling

What are the Maintenance Requirements for Oldham Couplings to Ensure Their Longevity?

Maintaining Oldham couplings is essential to ensure their longevity and optimal performance. Proper maintenance practices can prevent premature wear and damage, reducing the risk of unexpected failures and downtime. Here are some maintenance requirements to consider for Oldham couplings:

  • Regular Inspection: Perform regular visual inspections of the coupling to check for signs of wear, misalignment, or damage. Look for cracks, corrosion, or any unusual behavior during operation.
  • Lubrication: Oldham couplings may require periodic lubrication to reduce friction between moving parts and prevent excessive wear. Check the manufacturer’s guidelines for the appropriate lubrication schedule and type of lubricant to use.
  • Alignment: Proper alignment is crucial for Oldham couplings to function correctly. Ensure that the shafts and hubs are correctly aligned to avoid additional stress on the coupling components.
  • Torque Check: Periodically check the coupling’s torque to verify that it is within the recommended operating range. Over-torqueing or under-torqueing can lead to coupling failure.
  • Environmental Protection: In harsh environments or applications exposed to contaminants, consider using protective covers or enclosures to shield the coupling from debris, dirt, and moisture.
  • Replacement of Worn Parts: If any component of the Oldham coupling shows signs of wear or damage, promptly replace it with a new one from the manufacturer.
  • Proper Handling: During installation or maintenance, handle the coupling components with care to avoid any accidental damage.

It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the Oldham coupling model being used. Proper maintenance practices will not only extend the coupling’s lifespan but also contribute to the overall reliability and efficiency of the mechanical system it is part of.

oldham coupling

What is an Oldham Coupling and How Does It Function in Mechanical Systems?

An Oldham coupling is a type of flexible coupling used in mechanical systems to transmit torque between two shafts that are misaligned. It consists of three main components: two hubs or discs and a middle block. The two hubs are connected to the respective shafts, and the middle block sits in between them.

The key feature of the Oldham coupling is the middle block, which has slots on its opposite faces and is connected to the hubs using pins or keys. The slots in the middle block are oriented perpendicular to each other, allowing the middle block to move in a plane perpendicular to the axis of the shafts.

When torque is applied to one shaft, it is transmitted to the middle block of the coupling. Due to the slots, the middle block can slide laterally as the shafts rotate, accommodating both angular and axial misalignments between the shafts. This sliding action helps to reduce the reaction forces and wear that would otherwise occur in rigid couplings when misalignment is present.

Oldham couplings are known for their ability to provide constant velocity transmission even when misalignment exists. They do not have any backlash, which means there is minimal play between the coupling components during rotation. This feature makes them suitable for precision applications where accurate torque transmission and positioning are required.

One of the main advantages of the Oldham coupling is that it effectively isolates the connected shafts from each other, which can help in reducing vibrations and noise. Additionally, it can compensate for parallel misalignment between the shafts, making it ideal for applications where parallel shafts need to be connected while allowing some degree of misalignment.

Oldham couplings are commonly used in various industrial machinery and automation systems, including CNC machines, robotics, printing presses, and conveyor systems. They are particularly useful in applications where precise torque transmission, misalignment compensation, and low maintenance are essential.

China manufacturer Oldham Couplings Clamp or Screw up Aluminum Anodize Torsionally Flexible Coupling  oldham couplingChina manufacturer Oldham Couplings Clamp or Screw up Aluminum Anodize Torsionally Flexible Coupling  oldham coupling
editor by CX 2024-05-03